Fractional chromatic number of distance graphs generated by two-interval sets
نویسندگان
چکیده
منابع مشابه
Fractional chromatic number of distance graphs generated by two-interval sets
Let D be a set of positive integers. The distance graph generated by D, denoted by G(Z,D), has the set Z of all integers as the vertex ∗Supported in part by the National Science Foundation under grant DMS 0302456. †Supported in part by the National Science Council, R. O. C., under grant NSC942115-M-110-001.
متن کاملCircular Chromatic Numbers and Fractional Chromatic Numbers of Distance Graphs with Distance Sets Missing An Interval
Suppose S is a subset of a metric spaceM with a metric δ, and D a subset of positive real numbers. The distance graph G(S, D), with a distance set D, is the graph with vertex set S in which two vertices x and y are adjacent iff δ(x, y) ∈ D. Distance graphs, first studied by Eggleton et al. [7], were motivated by the well-known plane-coloring problem: What is the minimum number of colors needed ...
متن کاملChromatic number of graphs with special distance sets, I
Given a subset D of positive integers, an integer distance graph is a graphG(Z, D) with the set Z of integers as vertex set and with an edge joining two vertices u and v if and only if |u−v| ∈ D. In this paper we consider the problem of determining the chromatic number of certain integer distance graphs G(Z, D)whose distance set D is either 1) a set of (n + 1) positive integers for which the n ...
متن کاملFractional chromatic number and circular chromatic number for distance graphs with large clique size
Let Z be the set of all integers and M a set of positive integers. The distance graph G(Z,M) generated by M is the graph with vertex set Z and in which i and j are adjacent whenever |i − j| ∈ M . Supported in part by the National Science Foundation under grant DMS 9805945. Supported in part by the National Science Council, R. O. C., under grant NSC892115-M-110-012.
متن کاملThe fractional chromatic number of mycielski's graphs
The most familiar construction of graphs whose clique number is much smaller than their chromatic number is due to Mycielski, who constructed a sequence G n of triangle-free graphs with (G n ) = n. In this note, we calculate the fractional chromatic number of G n and show that this sequence of numbers satis es the unexpected recurrence a n+1 = a n + 1 a n .
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Journal of Combinatorics
سال: 2008
ISSN: 0195-6698
DOI: 10.1016/j.ejc.2007.09.007